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12.0.1 Review:

In the last class, we saw the general algorithm for an online convex optimization method.

Algorithm 1: Let K ⊆ Rd be a convex decision set.

for t = 1...T
Algorithm selects xt ∈ K
Nature chooses convex function ft : K → R

RegT :=

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x)

Examples:

1. Boosting

2. Statistical Problems: Batch (IID) framework

12.0.2 Batch IID Framework

Let us now look at the Batch framework in more detail. Given:

• Independent and identically distributed dataset (x1, y1), ..., (xT , yT ) ∈ D s.t. xt ∈ X and yt ∈ Y .

• Hypothesis space H with functions which map elements of X to Y

• Loss Function: ` : H×X × Y → R.

Assumption: Let H = {hθ : θ ∈ Θ ⊆ Rd} and `(hθ, (x, y)) be a convex function1 in θ. For eg. consider a
set of neural networks models forming the hypothesis space H and θ can be their parameters like learning
rate, number of hidden layers, etc.

Objective: Let L(h) = E(x,y)∼D [` (h, (x, y))]. We want to find some ĥt
2 s.t. L(ĥt) −minh∈H L(h) < ε .

The overall quantity on the LHS is called ”excess risk“.

Classical Algorithm: Empirical Risk Management - Pick ĥT by minimizing h over empirical sample
i.e.

ĥT = arg min
h∈H

1

T

T∑
t=1

` (h, (x, y))

1In realistic scenarios, this may not always be true i.e. ` (hθ, (x, y)) may not be convex function
2Quantities denoted byˆare functions of empirical data i.e. are an estimate
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Under previous assumption, we can write an algorithm for which excess risk is less than regret.

Alternate Algorithm: Stochastic Online Convex Optimization -

Algorithm 2:

For t = 1...T:
θt chosen using the online convex optimization algorithm
(xt, yt) revealed
ft(θt) = l (θt, (xt, yt))

Output: ĥ = h 1
T

∑T
t=1 θt

For ĥ defined by the output above, we make the following claim:

Claim 12.1

L(ĥ)− min
h∗∈H

L(h∗) ≤ E
[

RegT
T

]
Proof: Let θ̄T = 1

T

∑T
t=1 θt. Then,

L(ĥ) = L
(
h 1

T

∑T
t=1 θt

)
= L

(
hθ̄T
)

= E(x,y)∈D

[
`
(
hθ̂T , (x, y)

)]
≤ 1

T

T∑
t=1

E(x,y)∈D [` (hθ, (x, y))]

where we used the Jensen’s inequality in the last step. To move forward, notice that x, y are IID variables
and our algorithm cannot distinguish between the input data (be it training or testing data). Hence, the
expectation would remain unchanged for testing and training datasets. Thus, replacing (x, y)→ (xt, yt):

L
(
ĥ
)
≤ 1

T

T∑
t=1

E(xt,yt)∈D [` (hθt , (xt, yt))]

Note that loss function is defined as ft(θt) = l (θt, (xt, yt)). Substituting in above equation, we get

L
(
ĥ
)
≤ 1

T
E(xt,yt)∈D

T∑
t=1

[ft (θt)]

≤ 1

T
E(xt,yt)∈D

[
min
θ∈Θ

T∑
t=1

ft (θ)

]
+

RegT
T

≤ 1

T
min
θ∈Θ

E(xt,yt)∈D

[
T∑
t=1

` (hθ, xt, yt) + RegT

]

Since θ is now chosen to the argument where RHS is minimum and again using the fact (xt, yt) is IID,

E

[
1

T

T∑
t=1

` (hθ, (xt, yt))

]
= E [` (hθ, (x, y))] (12.1)
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Substituting this in RHS of previous equation, we get:

L(ĥ) ≤ min
θ∈Θ

E(x,y)∈D [` (hθ, (x, y))] + E(xt,yt)∈D

[
RegT
T

]
(12.2)

L(ĥ) ≤ min
θ∈Θ
L (hθ) + E(xt,yt)∈D

[
RegT
T

]
(12.3)

Follow the Leader (FTL):

Recap: xt = arg minx∈K
∑t−1
s=1 fs(x)

Claim 12.2

RegT(FTL) ≤
T∑
t=1

(ft(xt)− ft(xt+1))

Proof: To prove this, we use the method of induction. Consider the first time iteration:

RegT(FTL) = f1(x1)− f1(x∗) = f1(x1)−min
x∈K

1∑
s=1

fx(x)

= f1(x1)− f1(x2)

So, the base case holds. Now consider the case of T > 1 iterations, assuming the claim is true for T − 1.
Then, we have:

RegT(FTL) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(xT+1)

=

T−1∑
t=1

(
ft(xt)− ft(xT+1)

)
+ fT (xT )− fT (xT+1)

Since xt = arg minx∈K
∑t−1
s=1 fs(x), this implies

∑T−1
t=1 ft(xT ) ≤

∑T−1
t=1 ft(u) ∀u ∈ K. Setting u = xT+1, we

get
∑T−1
t=1 ft(xT ) ≤

∑T−1
t=1 ft(xT+1). Using this relation in above equation, we get

RegT(FTL) ≤
T−1∑
t=1

(ft(xt)− ft(xT )) + fT (xT )− fT (xT+1)

≤ RegT−1(FTL) + ft(xT )− ft(xT+1)

Using the induction, we can recursively expand the above inequality to get

RegT(FTL) ≤
T−1∑
t=1

(ft(xt)− ft(xt+1)) + fT (xT )− fT (xT+1)

=

T∑
t=1

(ft(xt)− ft(xt+1))
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Gaussian Density Estimation:

Let us look at an example of FTL. Consider the following algorithm:

Algorithm 3:

• Data zt are revealed one by one

• Algorithm predicts µt, the mean of the data

• Loss function:ft(µt) = ‖µt − zt‖22

To choose the mean, we use FTL and define mean as µt = arg minµ
∑t−1
s=1

1
2 ‖µ− zs‖

2
2. Using the first

derivative test, we can compute the minimum of function on RHS and after little algebraic manipulation,
we get µt = 1

t−1

∑t−1
s=1 zs = z̄t−1

Let us analyze the performance of this algorithm. We start with the definition of regret function:

RegT ≤
T∑
t=1

(
‖µt − zt‖22 − ‖µt+1 − zt‖22

)
≤

T∑
t=1

(
‖z̄t−1 − zt‖22 − ‖z̄t − zt‖

2
2

)
Let us focus on second term and try to write in is terms of first term.

z̄t =
1

t

t∑
s=1

zs =
t− 1

t
z̄t−1 +

1

t
zt

=⇒ z̄t − zt =

(
1− 1

t

)
(z̄t−1 − zt)

Substituting this in expression of regret, we get

RegT ≤
T∑
t=1

‖z̄t−1 − zt‖22 −
(

1− 1

t

)2

‖z̄t−1 − zt‖22

Dropping the 1/t2 term:

≤
T∑
t=1

2

t
‖z̄t−1 − zt‖22

≤ 8D

(
T∑
t=1

1

t

)
≤ 8D log T

In second last step, we use ‖zt‖22 < D. This result is much better then Online gradient descent whose

performance is O(
√
T ). This is because the loss function in this case is strongly convex.
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Fact: If ft is αt-strongly convex, then

RegT(FTL) ≤ O

(
T∑
t=1

1

At−1

)

where At =
∑t
s=1 αs.


