Linear Algebra Notes 2
Linear Algebra Done Right
第四章 Polynomials
- 4.1 \(\mathbb{F}\) 表示 \(\mathbb{R}\) 或者 \(\mathbb{C}\)
- 4.2 定义 \(\text{Re }{z},\, \text{im }{z}\),又记为 \(\Re{z},\, \Im{z}\)
- 4.3 定义 complex conjugate, absolute value 共轭,模
-
4.5 复数的性质
- \(z + \overline{z} = 2 \text{Re } z\).
- \(z - \overline{z} = 2 \text{Im } z\).
- \(z \overline{z} = \left\vert z \right\vert ^2\).
- \(\overline{w+z} = \overline{w} + \overline{z}\), \(\overline{wz} = \overline{w} \overline{z}\).
- \(\overline{\overline{z}} = z\).
- \(\left\vert \text{Re } z \right\vert \leq \left\vert z \right\vert\) and \(\left\vert \text{im } z \right\vert \leq \left\vert z \right\vert\).
- \(\left\vert \overline{z} \right\vert = \left\vert z \right\vert\) .
- \(\left\vert wz \right\vert = \left\vert w \right\vert \left\vert z \right\vert\).
- \(\left\vert w + z \right\vert \leq \left\vert w \right\vert + \left\vert z \right\vert\).
-
4.6 多项式的定义
Recall that a function \(p : \mathbb{F} → \mathbb{F}\) is called a polynomial with coefficients in \(\mathbb{F}\) if there exist \(a_0, \ldots, a_m \in \mathbb{F}\) such that
\[p(z) = a_0 + a_1z + a_2z^2 + \cdots + a_mz^m\] - 4.7 多项式为zero function就是说所有系数都为0
- 4.8 多项式除法
若 \(p,s \in \mathcal{P}(\mathbb{F}),\, s \neq 0\),则存在 \(q,r \in \mathcal{P}(\mathbb{F}\) 使
\[p = sq + r \text{ and } \text{deg} r < \text{deg} s\]证:设 n = deg p, m = deg s, 若 n < m 则直接令q为0,否则:
Define \(T : \mathcal{P}_{n-m}(\mathbb{F}) \times \mathcal{P}_{m-1}(\mathbb{F}) → \mathcal{P}_n(\mathbb{F})\) by:
\[T(q,r) = sq + r\]说白了就是 p / s = q 余 r 其中余项r的次数比除数s低。
这显然是个线性空间,由T定义,deq sq >= m, deg r = m-1,所以 \(T(q,r) = 0\) 意味着 \(q = 0,\, r = 0\). 所以 \(\text{null }T\) 维度是0,所以 T 是满射,所以原象存在且唯一
-
4.9 定义 zeros of a polynomial
A number \(\lambda \in \mathbb{F}\) is called a zero (or root) of a polynomial \(p \in \mathcal{P}(\mathbb{F})\) if \(p(\lambda) = 0\).
-
4.10 定义 factor
A polynomial \(s \in \mathcal{P}(\mathbb{F})\) is called a factor of \(p \in \mathcal{P}(\mathbb{F})\) if there exists a polynomial \(q \in \mathcal{P}(\mathbb{F})\) such that \(p = sq\).
-
4.11
简单说就是若z是一个根,则
\[p(z) = (z - \lambda)q(z)\]成立
证略
- 4.12 一个m阶多项式最多有m个根
-
4.13 代数基本定理 Fundamental Theorem of Algebra
Every nonconstant polynomial with complex coefficients has a zero
这里居然是用Liouville定理证的,表示看不懂,一个自己找的比较基本的证明见。
-
4.14 复数域上多项式的唯一分解
\[p(z) = c(z-\lambda_1)\cdots(z-\lambda_m)\] -
4.15 Polynomials with real coefficients have zeros in pairs
实系数多项式的根的共轭也是根
-
4.16 实系数二次方程的求根公式
-
4.17 实数域上多项式的唯一分解
\[p(x) = c(x-\lambda_1)\cdots(x-\lambda_m)(x^2+b_1x+c_1)\cdots(x^2+b_Mx+c_M)\]如果 p(x) 有复数根,那么
\[\begin{aligned} p(x) &= (x-\lambda)(x-\overline{\lambda})q(x) &= (x^2-2(\operatorname{Re } \lambda)x + \left\vert \lambda \right\vert ^2) q(x) \end{aligned}\]如果能证明q(x)也是实系数,就可以递归下去。直到p(x)全是实根,再用4.14即可。
由4.11 q(z) 存在,但是对于全体实数,\((x-\lambda)(x-\overline{\lambda})\) 为非0实数,所以q(x)为实数,由4.7,q(x)的系数都是实数
第五章 Eigenvalues, Eigenvectors, and Invariant Subspaces
前言写的很好,为了研究 \(\mathcal{L}(V) = \mathcal{L}(V,V)\) 上的函数,如果有一个子空间在映射之后还是在相同的子空间,那么这种空间应该专门起个名字。
-
5.1 Notation \(\mathbb{F},\, V\)
- \(\mathbb{F}\) denotes \(\mathbb{R}\) or \(\mathbb{C}\).
- \(V\) denotes a vector space over \(\mathbb{F}\).
-
5.2 定义 不变子空间 invariant subspace
若 \(T \in \mathcal{L}(V)\), \(U\) 是 \(V\) 的子空间,若 \(T(U) \subset U\),则称U在T变换下是不变子空间。
另一种记法: \(T|_U \in \mathcal{L}(U)\).
-
5.5 定义 eigenvalue (又叫characteristic value) 特征值
Suppose \(T \in \mathcal{L}(V)\). A number \(\lambda \in \mathbb{F}\) is called an eigenvalue of \(T\) if there exists \(v \in V\) such that \(v \neq 0\) and \(Tv = \lambda v\).
-
5.56 有限维来说,
- \(\lambda\) 是 \(T\) 的特征值等价于
- \(T-\lambda I\) 不可逆
-
5.57 定义 eigenvector 特征向量
-
5.10 Linearly independent eigenvectors
若 \(T \in \mathcal{L}(V)\),它的特征值为 \(\lambda_i\),对应特征向量为 \(v_i\) 那么 \(v_i\) 线性无关
证明见书,此处好像没限制维度。
-
5.13 Number of eigenvalues
Suppose V is finite-dimensional. Then each operator on V has at most dim V distinct eigenvalues.
由5.10立得
-
5.14 定义 \(T \vert _U\) 和 \(T / U\)
若 \(T \in \mathcal{L}(V)\), \(U\) 是 \(V\) 的不变子空间,则
-
The restriction operator:
\(T \vert_U \in \mathcal{L}(U)\) is defined by
\[T \vert_U (u) = Tu\]for \(u \in U\).
-
The quotient operator \(T / U \in \mathcal{L}(V/U)\) is defined by
\[(T/U)(v+U) = Tv+U\]for \(v \in V\).
-
-
5.16 定义 \(T^m\)
若 \(T \in \mathcal{L}(V)\), \(m\)是正整数,则定义
- \(T^m = T \cdots T \text{ m个}T\).
- \(T^0 = I \in \mathcal{L}(V)\).
- 若\(T\)可逆,则 \(T^{-m} = \left( T^{-1} \right)^m\)
-
5.17 定义 \(p(T)\)
若 \(T \in \mathcal{L}(V),\, p \in \mathcal{P}(\mathbb{F}\),且
\[p(z) = a_0 + a_1z + a_2z^2 + \cdots + a_mz^m\]则定义
\[p(T) = a_0I + a_1T + a_2T^2 + \cdots + a_mT^m\] -
5.19 定义 多项式之积
If \(p, q \in \mathcal{P}(\mathbb{F})\), then \(pq \in \mathcal{P}(F)\) is the polynomial defined by
\[(pq)(z) = p(z)q(z)\]注:是卷积
-
5.20
- \((pq)(T) = p(T)q(T)\) ;
- \(p(T)q(T) = q(T)p(T)\) .
-
5.21 Operators on complex vector spaces have an eigenvalue
Every operator on a finite-dimensional, nonzero, complex vector space has an eigenvalue.
证见书
- 5.22 定义 matrix of an operator \(\mathcal{M}(T)\)
- 5.24 定义 矩阵的对角 (左上到右下)
- 5.25 定义 上三角矩阵 (左下为0)
-
5.26 上三角的等价形式
Suppose \(T \in \mathcal{L}(V)\) and \(v_1,\ldots,v_n\) is a basis of V. 那么以下三个等价
- \(\mathcal{M}(T,(v_1,\ldots,v_n))\) 是上三角矩阵
- \(Tv_j \in \operatorname{span}(v_1,\ldots,v_j) \text{ for each } j = 1,\ldots,n\);
- \(\operatorname{span}(v_1,\ldots,v_j)\) is invariant under \(T\) for each \(j = 1,\ldots,n\)
比较显然,不证了。
-
5.27 Over C, every operator has an upper-triangular matrix
Suppose \(V\) is a finite-dimensional complex vector space and \(T \in \mathcal{L}(V)\). Then T has an upper-triangular matrix with respect to some basis of \(V\).
证明也比较长,不抄了,大意是找一个递归证,利用特征值找到不变子空间(所以在\(\mathbb{R}\)上不行,因为特征值可能不存在)令 \(U = \text{range }(T- \lambda I)\),然后由归纳假设,将 \(U\) 的基扩充成 \(V\) 的基, 对于新扩充的基有 \(T v_k = (T - \lambda I) v_k + \lambda v_k\),有\(Tv_k \in \operatorname{span}(u_1,\ldots,u_m,v_1,\ldots,v_\), 再由5.26得出。
-
5.30 上三角矩阵可逆等价于对角线上的元素不为0
书上的证法比较麻烦,事实上,完全可以构造出一个非0向量使 \(Tv = 0\)
- 5.32 上三角矩阵的特征值在对角线上。
- 5.34 定义 ** diagonal matrix** 对角矩阵
-
5.36 定义 ** eigenspace(特征空间), \(E(\lambda, T)\)
若 \(T \in \mathcal{L}(V)\) 且 \(\lambda \in \mathbb{F}\). The eigenspace of \(T\) corresponding to \(\lambda\), denoted by \(E(\lambda, T)\), is defined by
\[E(\lambda, T) = \text{null }(T - \lambda I)\]\(\lambda\)对应的特征空间是所有对应\(\lambda\)的特征向量组成的空间。
-
5.38 不同λ 对应的特征空间的和是直和 (特征空间相互垂直) ,它们的维度和小于总空间的维度
由5.10已经证过。
-
5.39 定义 diagonalizable 可对角化
An operator \(T \in \mathcal{L}(V)\) is called diagonalizable if the operator has a diagonal matrix with respect to some basis of \(V\).
-
5.41 可对角化的等价条件
- \(T\) 可对角化
- \(V\) 有由 \(T\) 的特征向量组成的基
-
存在一维子空间 \(U_1,\ldots,U_n\) of \(V\),每个在\(T\)下都是不变子空间,且
\[V = U_1 \oplus \cdots \oplus U_n\] - \(V = E(\lambda_1,T) \oplus \cdots \oplus \text{dim }E(\lambda_m,T)\).
- \(\text{dim }V = \text{dim }E(\lambda_1,T) + \cdots + \text{dim }E(\lambda_m,T)\).
证不想看了。。
-
5.44
如果 \(T\) 有 \(n\) 个不同的特征值,则 \(T\) 可对角化
第六章 内积空间
-
6.1 Notation \(\mathbb{F},\, V\)
- \(\mathbb{F}\) denotes \(\mathbb{R}\) or \(\mathbb{C}\).
- \(V\) denotes a vector space over \(\mathbb{F}\).
-
6.2 定义 dot product 点积
对于 \(\mathbb{R}^n\),定义点积为element-wise积的和
-
6.3 定义 inner product 内积
定义内积是\(V\)上满足如下性质的二元函数
- positivity
\(\langle v,v \rangle \geq 0\) for all \(v \in V\); - definiteness
\(\langle v,v \rangle = 0 \iff v=0\); - additivityin first slot
\(\langle u+v,w \rangle = \langle u,w \rangle + \langle v,w \rangle\); - homogeneity in first slot
\(\langle \lambda u,v \rangle = \lambda \langle u,v \rangle\); - conjugate symmetry
\(\langle u,v \rangle = \overline{\langle v,u \rangle}\).
- positivity
-
6.4 例子
- Euclidean inner product on \(\mathbb{F}^n\) is defined by
- [-1,1]上的连接实值函数的内积可以定义为
- \(\mathcal{P}(\mathbb{R})\) 上可定义内积为
-
6.5 定义 内积空间 (inner product space)
An inner product space is a vector space \(V\) along with an inner product on \(V\).
-
6.6 Notation \(V\)
注意:从现在开始 \(V\) 是表示内积空间。
-
6.7 内积空间的性质
- For each fixed \(u \in V,\, \langle v,u \rangle\)作为 \(v\) 的函数是 \(V → \mathbb{F}\) 上的线性函数
- \(\langle 0,u \rangle = 0\).
- \(\langle u,0 \rangle = 0\).
- \(\langle u,v+w \rangle = \langle u,v \rangle + \langle u,w \rangle\).
- \(\langle u,\lambda v \rangle = \overline{\lambda} \langle u,v \rangle\).
证明略
-
6.8 定义 norm, \(\| v \|\)
\[\| v \| = \sqrt { \langle v,v \rangle }\] -
6.11 定义 orthogonal
u,v are called orthogonal if \(\langle u,v \rangle = 0\).
-
6.12 Orthogonality and 0
0 和任意向量都正交 0 是唯一和自己正交的向量
-
6.13 Pythagorean Theorem
\[\| u + v \|^2 = \| u \|^2 + \| v \|^2\]证:由定义。
-
6.14 An orthogonal decomposition
若 \(u,v \in V,\, v \neq 0\),令 \(c = \frac{\langle u,v \rangle}{\| v \|^2}\) and \(w = u - cv\),则
\[\langle w,v \rangle = 0\] -
6.15 Cauchy-Schwarz Inequality
\[\left\vert \langle u,v \rangle \right\vert \leq \| u \| \| v \|.\]证略
-
6.17 例子
- 若 x_1,\ldots,x_n,y_1,\ldots,y_n \in \mathbb{R} 则
- 若 \(f,g\)是[-1,1] 上的实值函数,则
\(\left\vert \int_{-1}^{1}f(x)g(x)\operatorname{dx} \right\vert^2 \leq \left( \int_{-1}^{1} \left( f(x) \right) ^2 \right) \left( \int_{-1}^{1} \left( g(x) \right) ^2 \right)\).
-
6.18 三角不等式
\[\| u+v \| \leq \| u \| + \| v \|\] -
6.22 Paralelogram Equality
\[\| u+v \|^2 + \| u-v \|^2 = 2(\|u\|^2 + \|v\|^2)\] -
6.23 定义 orthonormal
单位正交
-
6.25
若 \(e_1,\ldots,e_m\) 是 \(V\) 中的单位正交向量,则
\[\| a_1e_1 + \cdots + a_me_m \|^2 = \left\vert a_1 \right|vert^2 + \cdots + \left\vert a_n \right\vert^2\] - 6.26 单位正交的向量是线性无关的
- 6.28 n个单位正交的向量是一组基
-
6.30
若 \(e_1,\ldots,e_n\) 是一组单位正交基,则
\[\begin{aligned} v &= \langle v,e_1 \rangle + \cdots + \langle v,e_n \rangle e_v \\ \| v \|^2 &= \left\vert \langle v,e_1 \rangle \right\vert ^2 + \cdots + \left\vert \langle v,e_n \rangle \right\vert |2 \end{aligned}\] -
6.31 Gram-Schimdt Procedure 格拉姆-施密特正交化
\[e_j = \frac{v_j - \langle v_j,e_1 \rangle e_1 - \cdots - \langle v_j,e_{j-1} \rangle e_{j-1}}{ \| {v_j - \langle v_j,e_1 \rangle e_1 - \cdots - \langle v_j,e_{j-1} \rangle e_{j-1}} \| }\] -
6.33 Example
把\(1,x,x^2\)在内积为 \(\langle p,q \rangle = \int_{-1}^{1}{p(x)q(x)\operatorname{dx}}\) 的标准正交基找到了。见书。
-
6.34 Existence of orthonormal basis
每个有限维内积空间都有一组单位正交基
-
6.35 一组单位正交向量可以扩充为一组单位正交基
-
6.37 Upper-triangular matrix with respect to orthonormal basis
Suppose \(T \in \mathcal{L}(V)\). If T has an upper-triangular matrix with respect to some basis of V, then T has an upper-triangular matrix with respect to some orthonormal basis of V.
一个线性变成在一组基下是上三角矩阵,就能在一组标准正交基下是上三角矩阵
证明见书,现在刚看完,一看就懂。
-
6.38 Schur’s theorem
有限维复向量空间上(\(\mathbb{C}^n\)),每个线性变换都有一组标准正交基,使在这组基上对应的矩阵是上三角阵 5.27说的是在\(\mathbb{C}^n\),每个线性变换都有一组基,使在这组基上对应的矩阵是上三角阵,加之以6.37就可以了。
-
6.39 定义 linear functional
和3.92定义完全相同
-
6.42 Riesz Representation Theorem (里斯表示定理)
若 \(V\) 是有限维, \(\varphi \in \mathcal{L}(V)\),那么存在唯一 \(u \in V\) 使
\[\varphi(v) = \langle v,u \rangle\]早就理解出来了,证法也类似,用标准正交基证。
-
6.44 例 Find \(u \in \mathcal{P}(\mathbb{R})\) such that
\[\int_{-1}^{1}{p(t) \left( \cos(\pi t) \right) \operatorname{dt}} = \int_{-1}^{1}{p(t)u(t) \operatorname{dt}}\]从-1到1的积分是 \(\mathcal{P}_2(\mathbb{R})\) 到 \(\mathbb{R}\) 上的线性映射,题目实际上是,给定\(\varphi(p) ,\, p \in \mathcal{P}_2(\mathbb{R})\),求\(u\) 使 \(\varphi(p) = \langle p,u \rangle\)
-
6.45 定义 orthogonal complement
\[U^\perp = \left\{ v \in V : \langle v,u \rangle = 0 \text{ for every } u \in U \right\}\] -
6.46 正交补的性质
- \(U^\perp\) 是 \(V\) 的子空间
- \(\left\{ 0 \right\} ^\perp = V\).
- \(V^\perp = \left\{ 0 \right\}\).
- \(U \cap U^\perp \subset \left\{ 0 \right\}\).
- \[U \subset W \subset V \implies W^\perp \subset U^\perp\]
-
6.47
若 \(U\) 是 \(V\) 的有限维子空间,则
\[V = U \oplus U|\perp\]注意,U是有限维的,V没有限制
-
6.50 若 \(V\) 是有限维的,\(U\) 是 \(V\) 的子空间,则
\[\text{dim }U^\perp = \text{dim }V - \text{dim }U\] -
6.51
\[U = \left( U^\perp \right) ^\perp\]证明有点混乱,还没看。
-
6.53 定义 orthogonal projection, \(P_U\)
若 \(U\) 是 \(V\) 的有限维子空间,V到U的正交投影(orthogonal projection) \(P_U \in \mathcal{L}(V)\) 是:
\[\text{ For } v \in V, \text{ write } v = u+w, \text{ where }u \in U \text{ and } w \in U^\perp \text{. Then } P_Uv = u\] - 6.54 正交投影的性质,略。
-
6.56 Minimizing the distance to a subspace
若 \(U\) 是 \(V\) 的有限维正交子空间,则
\[\| v -P_Uv \| \leq \| v - u \|\]
第七章 内积空间上的Operator(方阵)
-
7.1 Notation
- \(\mathbb{F}\) denotes \(\mathbb{R}\) or \(\mathbb{C}\).
- \(V \text{ and } W\) denote finite-dimensional inner product spaces over F.
-
7.2 定义 adjoint, \(T^*\)
设 \(T \in \mathcal{L}(V,W)\), The adjoint of T is the function \(T^* : W → V\) such that
\[\langle Tv,w \rangle = \langle v,T^*w \rangle\] -
7.5 The adjoint is a linear map
\(\text{If } \mathcal{L}(V,W), \text{ then } T^* \in \mathcal{L}(W,V)\).
-
7.6 adjoint的性质
- \((S+T)^* = S^* + T^*\).
- \[(\lambda T)^* = \overline{\lambda} T^*\]
- \(\left( T^* \right) ^* = T\).
- \(I^* = I\).
- \[(ST)^* = T^*S^*\]
7.5和7.6都是用6.3和6.7证的。
-
7.7 Null space and range of T^*
若 \(T \in \mathcal{L}(V,W)\) 则
- \(\text{null }T^* = (\text{range }T)^\perp\);
- \(\text{range }T^* = (\text{null }T)^\perp\);
- \(\text{null }T = (\text{range }T^*)^\perp\);
- \(\text{range }T = (\text{null }T^*)^\perp\).
- 7.8 定义 conjugate transpose 共轭转置
-
7.10 The matrix of \(T^*\)
若 \(T \in \mathcal{L}(V,W),\,e_1,\ldots,e_n 基 V,, f_1,\ldots,f_m 基 W\) 则
\[\mathcal{M} \left( T^*, (f_1,\ldots,f_m), (e_1,\ldots,e_n) \right)\]是
\[\mathcal{M} \left( T, (e_1,\ldots,e_n), (f_1,\ldots,f_m) \right)\]的共轭转置
证明是由定义推出来的。
-
7.11 定义 self-adjoint (有人叫它Hermitian)
An operator \(T \in \mathcal{L}(V)\) is called self-adjoint if \(T = T^*\)
-
7.13 Eigenvalues of self-adjoint operators are real
Every eigenvalue of a self-adjoint operator is real.
\[\lambda \| v \| ^2 = \langle \lambda v,v \rangle = \langle Tv,v \rangle = \langle v,Tv \rangle = \langle v,\lambda v \rangle = \overline{\lambda} \| v \|^2\] -
7.14 Over \(\mathbb{C}\), \(Tv\) is orthogonal to \(v\) for all \(v\) only for the \(\boldsymbol{0}\) operator
若 \(V\) 是复内积空间, \(T \in \mathcal{L}(V)\),则
\[\langle Tv,v \rangle = 0 \implies T = 0\] -
7.15 Over \(\mathbb{C}\), \(\langle Tv,v \rangle\) is real for all v only for self-adjoint operators
若 \(V\) 是复内积空间, \(T \in \mathcal{L}(V)\),则
\[T \text{ is self-adjoint} \iff \langle Tv,v \rangle \in \mathbb{R}\]证:
\[\langle Tv,v \rangle - \overline{\langle Tv,v \rangle} = \langle Tv,v \rangle - \langle v,Tv \rangle = \langle Tv,v \rangle - \langle T^*v,v \rangle = \langle \left( T-T^* \right) v,v \rangle\] -
7.16
若 \(V\) 是实内积空间, \(T \in \mathcal{L}(V)\),则
\[\langle Tv,v \rangle = 0 \implies T = 0\] -
7.18 定义 normal 正规矩阵
\(T \in \mathcal{L}(V)\) is normal if
\[TT^* = T^*T\] -
7.20
\[T \text{ is normal } \iff \|Tv\| = \|T^*v\|\]证:
\[\begin{aligned} T \text{ is normal} & \iff T^*T-TT^* = 0 \\ & \iff \langle \left( T^*T-TT^* \right) v,v \rangle = 0 \\ & \iff \langle T^*Tv,v \rangle = \langle TT^*v,v \rangle \\ & \iff \text{( by T^*'s definition )} \|Tv\|^2 = \|T^*v\|^2 \end{aligned}\] - 7.21 对正规矩阵\(T\),\(T\)和\(T^*\)有相同的特征向量。
7.B 谱定理
-
7.24 Complex Spectral Theorem
若 \(\mathbb{F} = \mathbb{C}\) and \(T \in \mathcal{L}(V)\),那么以下条件等价
- T is normal (正规矩阵)
- T 的特征向量可以构成 \(V\) 的标准正交基
- 对于 \(V\) 的某个标准正交基, \(T\) 是对角矩阵。
证明见书
-
7.26 Invertible quadratic expressions
若 \(T \in \mathcal{L}(V)\) is self-adjoint, \(b,c \in \mathbb{R}\), \(b^2 < 4c\) 则
\(T^2 + bT + cI\) 可逆
证明有空抄。。
-
7.27 Self-adjoint operators have eigenvalues
Suppose \(V \neq \{ 0 \}\) and \(T \in \mathcal{L}(V)\) is a self-adjoint operator. Then \(T\) has an eigenvalue.
证明见书,有时间再抄。
-
7.28 Self-adjoint operators and invariant subspaces
若 \(T \in \mathcal{L}(V)\) is self-adjoint and \(U\) is a subspace of \(V\) that is invariant under \(T\). Then
- \(U^\perp\) in invariant under \(T\);
- \(T \bar _u \in \mathcal{L}(U)\) is self-adjoint;
- \(T \bar _u^\perp \in \mathcal{L}(U)\) is self-adjoint;
证明越来越不直观了,见书。
-
7.29 Real Spectral Theorem
若 \(\mathbb{F} = \mathbb{R}\) and \(T \in \mathcal{L}(V)\),那么以下条件等价
- T is self-adjoint (埃尔米特矩阵) 这里就是对称了。
- T 的特征向量可以构成 \(V\) 的标准正交基
- 对于 \(V\) 的某个标准正交基, \(T\) 是对角矩阵。
证明见书,有空好好理解一下。
-
7.31 定义 positive operator
An operator \(T \in \mathcal{L}(V)\) is called positive if \(T\) is self-adjoint and
\[\langle Tv,v \rangle \geq 0\] -
7.33 Definition square root
R is a square root of T if \(R^2 = T\)
-
7.35 positive operators的特征
以下条件等价
- T is positive;
- T is self-adjoint and all the eigenvalues of T are nonnegative;
- T has a positive square root
- T has a self-adjoint square root;
- there exists an operator \(R \in \mathcal{L}(V)\) such that \(T = R^*R\)
- 7.36 Each positive operator has only one positive square orot.
-
7.37 定义 isometry(等距同构)
An operator \(S \in \mathcal{L}(V)\) is called an isometry if for all \(v \in V\)
\[\| Sv \| = \| v \|\]即:S perserve norms.
-
7.42 isometry(等距同构)的性质
若 \(S \in \mathcal{L}(V)\),以下条件等价
- S is an isometry
- \(\langle Su,Sv \rangle = \langle u,v \rangle\) for all \(u,v \in V\).
- \(Se_1,\ldots,Se_n\) is orthonormal if \(e_1,\ldots,e_n \in V\) are orthonormal
- there exists an orthonormal basis \(e_1,\ldots,e_n\) such that \(Se_1, \ldots, Se_n\) is orthonormal
- \(S^*S = I\).
- \(SS^* = I\).
- \(S^*\) is an isometry
- \[S^{-1} = S^*\]
-
7.44 Notation \(\sqrt{T}\)
If T is a positive operator (半正定), then \(\sqrt{T}\) denotes the unique positive square root of \(T\).
-
7.45 Polar Depomposition
Suppose \(T \in \mathcal{L}(V)\). Then there exists an isometry \(S \in \mathcal{L}(V)\) such that
\[T = S \sqrt{ T^*T }\]注意,用矩阵表示时 \(S\) 和 \(T\) 不一定是一组基
证明以后看。
-
7.49 定义 singular values
若 \(T \in \mathcal{L}(V)\). The singular values of T are the eigenvalues of \(\sqrt{T^*T}\), with each eigenvalue \(\lambda\) repeated \(\text{dim }E(\lambda, \sqrt{T^*T})\) times.
-
7.51 Singular Value Decomposition 若 \(T \in \mathcal{L}(V)\) has singular values \(s_1,\ldots,s_n\). Then there exist orthonormas bases \(e_1,\ldots,e_n\) and \(f_1,\ldots,f_n\) of \(V\) such that for all \(v \in V\)
\[T v = v_1 \langle v,e_1 \rangle f_1 + \cdots + s_n \langle v,e_n \rangle f_n\]证明见书。